ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)
ddx[c⋅f(x)]=c⋅[ddxf(x)]
ddx[f(x)⋅g(x)]=f(x)⋅[ddxg(x)]+g(x)⋅[ddxf(x)]
ddx[f(x)g(x)]=g(x)⋅[ddxf(x)]−f(x)⋅[ddxg(x)]g(x)2
ddx[f(g(x))]=f′(g(x))⋅g′(x)
ddx(c)=0
ddxx=1
ddxxn=nxn−1
ddxx=12x
ddx1x=−1x2
ddxsin(x)=cos(x)
ddxcos(x)=−sin(x)
ddxtan(x)=sec2(x)
ddxcot(x)=−csc2(x)
ddxsec(x)=sec(x)⋅tan(x)
ddxcsc(x)=−csc(x)⋅cot(x)
ddxarcsin(x)=11−x2
ddxarccos(x)=−11−x2
ddxarctan(x)=11+x2
ddxarcsec(x)=1|x|x2−1
ddxarccot(x)=−11+x2
ddxarccsc(x)=−1|x|x2−1
ddxsinh(x)=cosh(x)
ddxcosh(x)=sinh(x)
ddxtanh(x)=sech2(x)
ddxsech(x)=−tanh(x)⋅sech(x)
ddxcoth(x)=−csch2(x)
ddxcsch(x)=−coth(x)⋅csch(x)
ddxex=ex
ddxax=ax⋅ln(a)if a>0
ddxln(|x|)=1x
ddxloga(x)=1xln(a)if a>0,a≠1
ddx[f(x)g(x)]=ddx[eg(x)⋅ln[f(x)]]=f(x)g(x)⋅(g(x)f(x)⋅[ddxf(x)]+ln[f(x)]⋅[ddxg(x)]),f>0
ddxcf(x)=ddx(ef(x)⋅ln(c))=cf(x)⋅ln(c)⋅[ddxf(x)]