הסתברות/מבוא/הסתברות מותנית

מתוך testwiki
גרסה מ־19:15, 15 במרץ 2023 מאת imported>יהודה שמחה ולדמן (הגהה, שיפוץ קודים מתמטיים)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה לניווט קפיצה לחיפוש

תבנית:הסתברות הסתברות מותנית היא ההסתברות של מאורע כלשהו בהנחה שמאורע אחר ארע.

הגדרה

תבנית:מבנה תבנית

כפי שאפשר לשים לב, ההסתברות המותנית אינה מוגדרת במקרה (B)=0. אא"כ יצוין אחרת, נניח במובלע כי זה אינו המצב.

דוגמא

נניח כי בתל־אביב גרים 100 בנים ו־20 בנות, ואילו בחיפה גרים 40 בנים ו־50 בנות. נניח כי בוחרים אדם כלשהו באקראי.

  • מה ההסתברות כי בחרנו בבת?
    • ישנן 70 בנות מתוך 210 אנשים סה"כ מהם אנו בוחרים אחד, לכן ההסתברות לבחור בת הוא 70210, כלומר שליש.
  • מה ההסתברות כי בחרנו בבת, אם ידוע כי האדם הנבחר גר בתל־אביב?
    • כאן ההסתברות מותנית, ונחשב לפי ההגדרות לעיל. המאורע A הוא בחירת בת והמאורע B הוא שנבחר תושב תל־אביב. קל לראות כי P(A)=13 וכן P(B)=120210=47. ההסתברות P(AB) היא ההסתברות להיות בת וגם בתל־אביב – ישנן 20 כאלה (מתוך אוכלוסיה של 210 סה"כ), ולכן P(AB)=221. כעת נציב בנוסחא לעיל, ונקבל כי ההסתברות לבחור בת בהנתן שהאדם שבחרנו הוא מתל־אביב היא:

P(A|B)=22147=16

תכונות

המשפט הבא מראה כי כל שלוש התכונות המאפיינות הסתברות, אותן ראינו במודל ההסתברותי, מאפיינות גם הסתברות מותנית. תבנית:משפט

בתרגיל:הסתברות מותנית היא הסתברות תתבקש להוכיח זאת.

מאותה סיבה, גם שאר התכונות של הסתברות מתקיימות לגבי הסתברות מותנית, כפי שאפשר לראות לדוגמה במשפט הבא.

תבנית:משפט בתרגיל:הסתברות מותנית של משלים תתבקש להוכיח זאת.

הסתברות מותנית של מאורעות בלתי־תלויים

התניה במאורע בלתי־תלוי אינה משנה את ההסתברות: תבנית:משפט

תבנית:הוכחה

המקרה האקראי הסימטרי

במודל ההסתברותי ראינו שבמקרה מרחב המדגם הסימטרי, הסתברות היא פרופורציה. נראה שהתכונה מתקיימת גם עבור הסתברות מותנית.

נתבונן בתרשים בצד שמאל. לפי ההגדרה, ההסתברות המותנית הנה (A|B)=(AB)(B)=|AB||Ω||B||Ω|=|AB||B|.

כלומר, בהנחה ש־B ארע, אז מדובר בפרופורציה של השטח שמשותף גם ל־A, כלומר הפרופורציה של A בהנחה שיש לבחור מתוך B.

קישורים חיצוניים

תבנית:מיזמים

תבנית:הסתברות